

FACILITIES ASSESSMENT

May 20, 2025

- 1 | EXECUTIVE SUMMARY
- 2 | BUILDING ENVELOPE / ADA/ MAINTENANCE / PROGRAM

ROOF REPORT SUMMARY

CAMPUS WIDE DEFICIENCIES

HIGH SCHOOL DEFICIENCIES

ELEMENTARY BUILDINGS DEFICIENCIES

SHOP BUILDING DEFICIENCIES

3 | MECHANICAL & ELECTRICAL SYSTEMS EVALUATION

MECHANICAL DEFICIENCIES

ELECTRICAL DEFICIENCIES

OPINION OF PROBABLE COSTS FOR MECHANICAL & ELECTRICAL

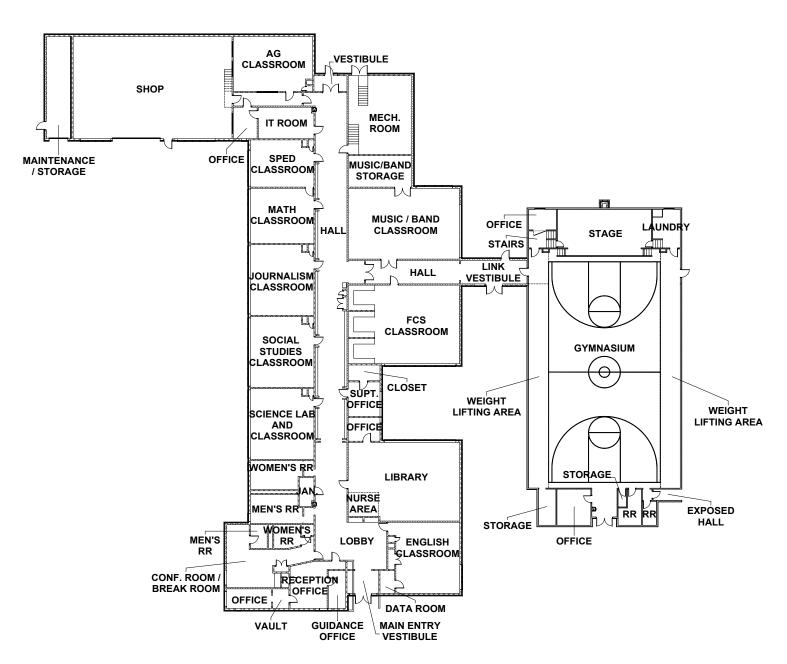
- 4 | OPINION OF PROBABLE COSTS
- 5 | APPENDIX

On March 3rd, 2025, Wilkins Architecture Design Planning, LLC (Wilkins ADP) along with consulting engineers from Engineering Technologies, Inc. (ETI), performed an on-site facilities assessment for Wheeler Central Public Schools.

Current enrollment figures for the school district are as follows: Kindergarten – 12th Grade (No Preschool) = 115 students; Preschool = 23 students

Over the last ten years the school district has seen an upward trend in enrollment; much of which can be attributed to former students moving back and starting families.

The on-site evaluation observed the current condition of the building's envelope (walls, windows and roof), interior finishes and equipment, mechanical and electrical systems, and also noted specific instances where the campus is not in compliance with the Americans with Disabilities Act (ADA). The program and space utilization within the buildings were evaluated with

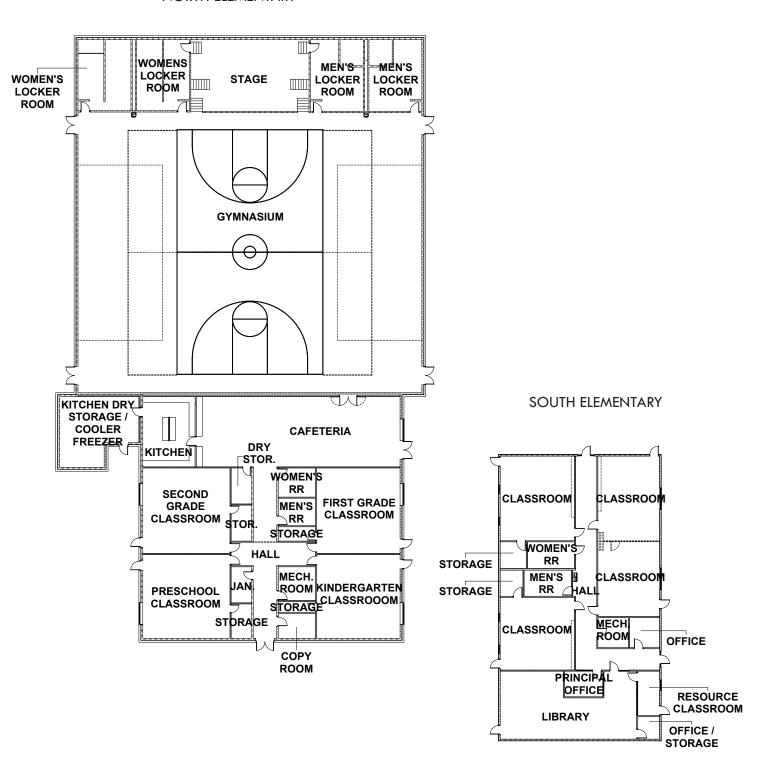

Year	Preschool	K-12	Total
2024/25	23	115	138
2023/24	19	106	128
2022/23	23	104	127
2021/22	21	93	114
2020/21	21	85	106
2019/20	23	82	105
2018/19	20	79	99
2017/18	20	92	112
2016/17	18	83	101
2015/16	15	78	93

input and assistance from Mr. Daniel Kluver, Superintendent of Wheeler Central Public Schools.

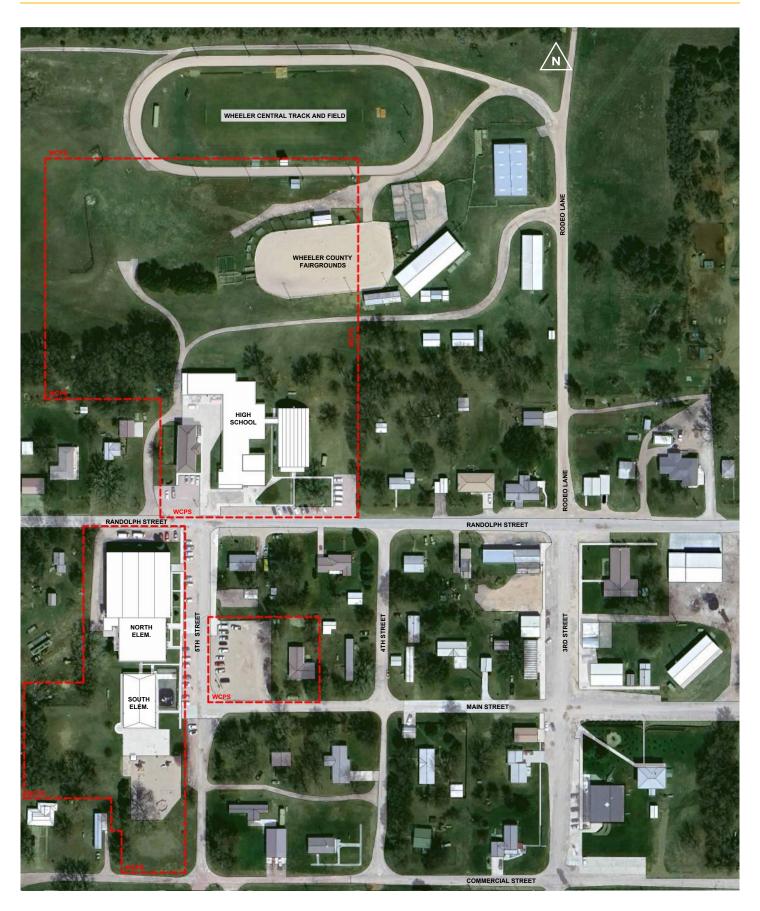
Wheeler Central Public Schools, as with the community, show great pride in the care that they take in their facilities. The Board of Education, Administration and Staff clearly show pride in the facilities they are part of. From investing in roof maintenance, to renovation of the North Elementary restrooms, the North Elementary Kitchen Addition, scheduled carpet/flooring replacements, and general facility maintenance it's clear the school district and board of education have demonstrated their commitment to taking care of their facilities, while making sure that the students and staff have the facilities that they need in order to have a good learning environment and educational experience. Even with the continued commitment to the annual maintenance on all existing facilities there are several capital improvement projects that are fairly substantial in scope. Some of the most notable of those larger projects would be an addition to the High School containing a weight room, storm shelter-locker rooms/restrooms, kitchen and M.P. room, an addition to the High School for a Technology Room, an addition to the Elementary buildings containing a hallway connection (combining both facilities), entry vestibule and office, supplemental classroom space with a storm shelter for the North Elementary students, walk-in cooler and freezer units added to the existing North Elementary kitchen addition, among other notable items. If all of the noted items are addressed and the building is brought up to current codes and standards, the estimated cost of the work, if the work were to take place in one project is \$4,691,413. Please note that this figure does include addressing some programmatic deficiencies such as an undersized shop, undersized storage spaces, under sized classrooms and dedicated wrestling room. Addressing all of these items in one large project would likely have some merit and should be explored.

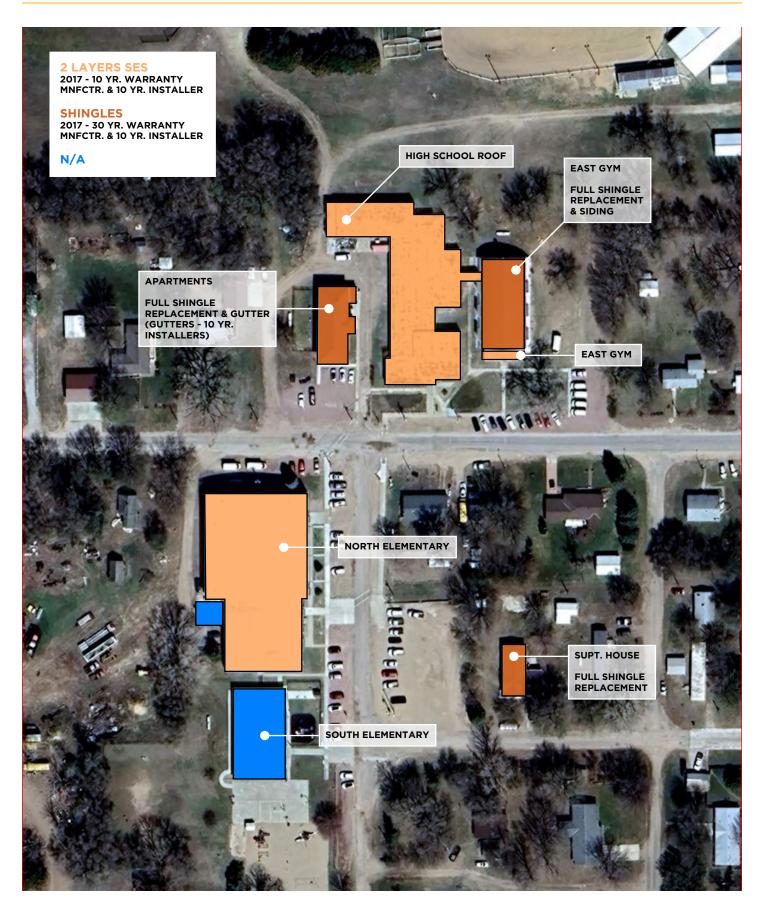
High School = 26,428 SF Campus Total = 57,246 SF

North Elementary Building First Floor = 23,389 SF


North Elementary Building Upper Level (Storage) = 1,896 SF

South Elementary Building = 5,533 SF


Campus Total = 57,246 SF


NORTH ELEMENTARY

2 | BUILDING ENVELOPE / ADA / MAINTENANCE / PROGRAM

2 | BUILDING ENVELOPE / ADA / MAINTENANCE / PROGRAM ROOF REPORT SUMMARY

IN THE ROOFING INDUSTRY, THERE IS A CONCEPT KNOWN AS THE "5 R'S" OF ROOFING". THESE ARE THE FIVE PHILOSOPHIES/APPROACHES TO MANAGING YOUR ROOF ASSETS. THEY ARE:

REPAIR

Invest dollars to extend the life and performance of the existing roof.

RETROFIT

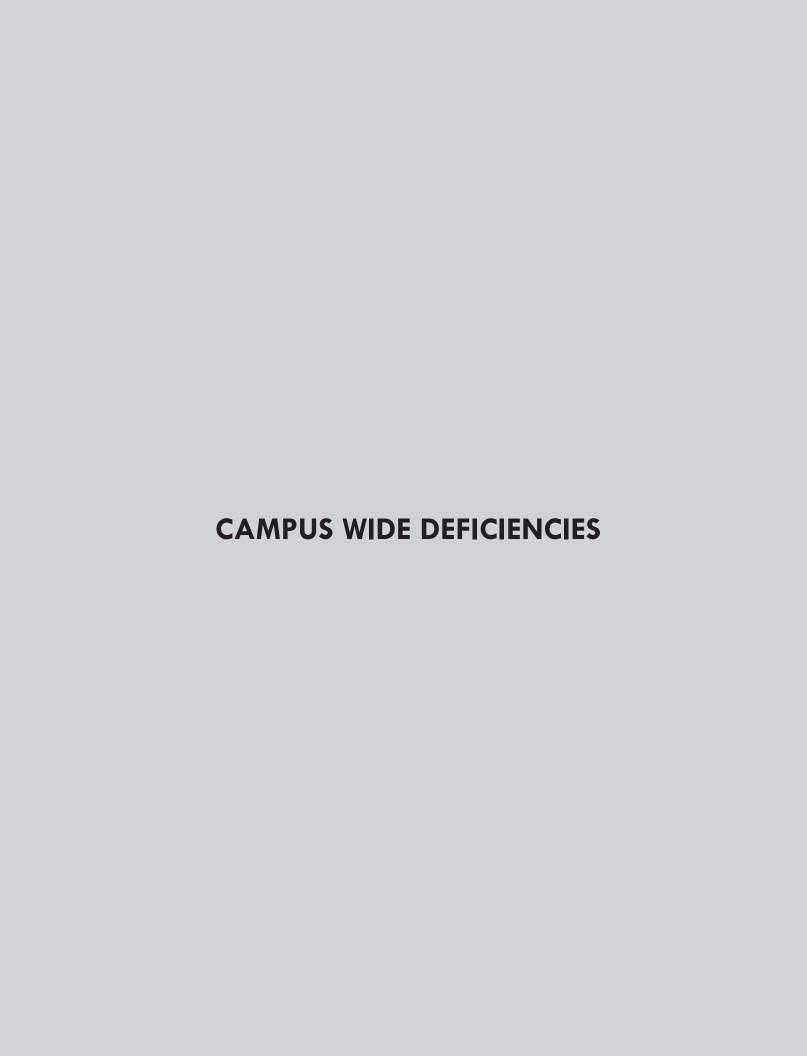
Installing a new roof on top of the existing roof. This process typically cuts the intended life span of the new roof almost in half.

RESTORE

Invest about 1/3 to 1/2 the cost of a full replacement. Brings the existing roof back to a like new warrant-able status. Some diagnostic testing required. Not all roofs qualify for this.

REPLACE

Most expensive option. Tear off the existing roof, flashings, insulation and perimeter details down to the roof deck and install a new roof system.

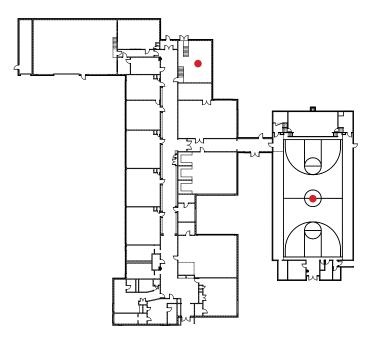

REFRAIN

Happens most often when capital funds are short. However, at a minimum, roofing maintenance should be performed to slow down deterioration of the roofs.

RECOMMENDATION:

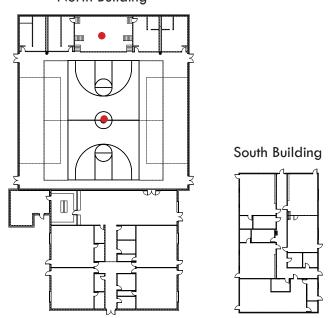
Overall, the school has done an excellent job of maintaining its roofs. There does appear to be a few instances of major leaks of roof sections that are currently under factory and manufacturer warranties. The areas with reported roof leaks are the North Elementary Gym and the High School roof (in several locations). It has been expressed from the Owner that the roof leaks have been address and still have failed to drain properly. For roof sections that do not have apparent leaks or poor health it may be in the school district's best interest to wait for a short time to see what transpires with any potential building projects. Depending upon the scope of any building project it may make sense to replace this roof at that point in time in conjunction with a larger project, or if nothing happens in that area then that roof should be scheduled for replacement.

*Building usage: It is our understanding that your facilities have a long term intended use. Therefore, it is my position that **ANY** work recommended and performed should **drive down long-term building costs and maintenance.**


It is known that asbestos is present in the building in these locations:

- (1951) High School Gym
- (1954) High School Various Classrooms/Rooms
- (1954) High School Mechanical Room
- (1974) North Elementary Gym & Stage and Various Classrooms

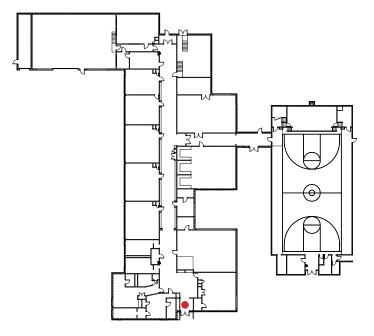
RECOMMENDATION


Remove / abate asbestos where compromised or if disturbed by construction.

High School

Elementary Buildings

North Building



SAFETY & SECURITY / PROGRAM

Main entrances in all educational campus buildings are not secure, access to the office/admin area is away from the entrance.

RECOMMENDATION

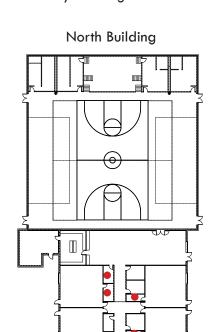
Remodel entrance and lobby to create a secure entrance and enable the offices to move to the front.

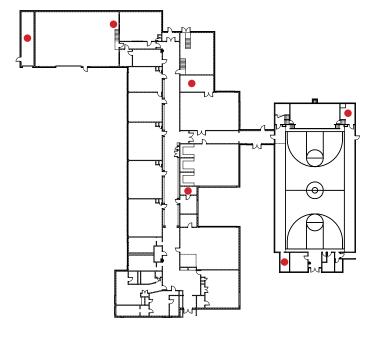
PROGRAM

Storage space seems to be at a premium.

RECOMMENDATION

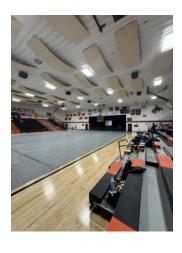
Consider adding storage space.




Elementary Buildings

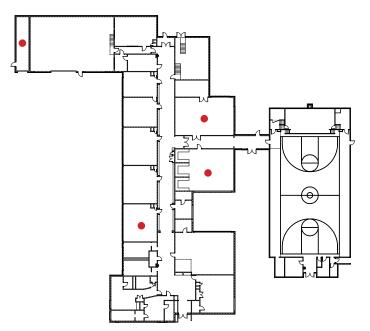
South Building

High School

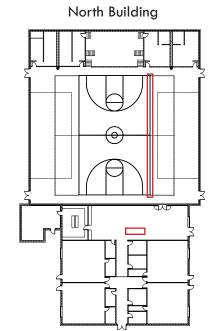


ROOF

Throughout the campus, there is evidence of several roof leaks.


RECOMMENDATION

Repair roof leaks.

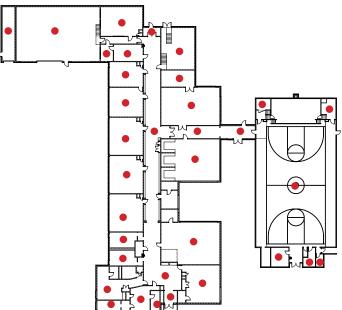

High School

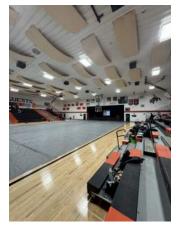


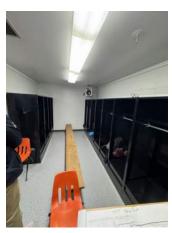
Elementary Buildings

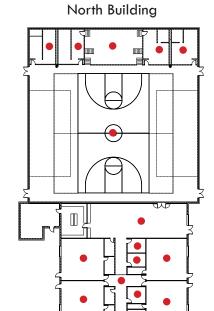
BUILDING SYSTEMS

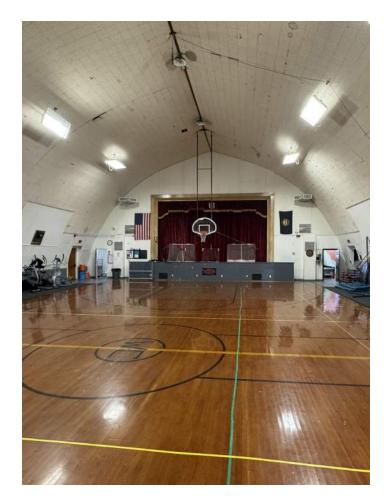
All facilities in most instances have old or retrofit fluorescent lighting/fixtures installed.


RECOMMENDATION


Replace with LED lighting.




High School


Elementary Buildings

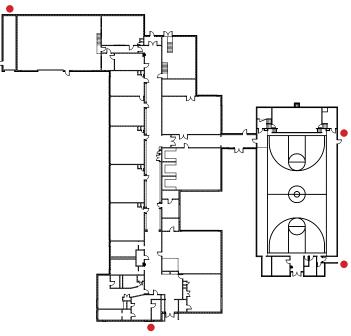
South Building

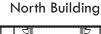


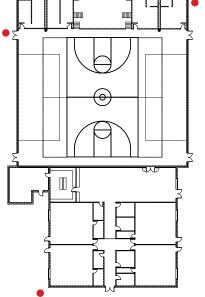
EXTERIOR

The exterior of the High School and North Elementary building have several instances of wear and deterioration to the façade. Paint is worn or missing from the walls, soffits and flashing components. Rust has accumulated in certain areas. There are instances where the soffit, flashing or wall panels are damaged.

RECOMMENDATION


Repair and replace damages to exterior façade. Consider removing rust and repainting where necessary.





High School

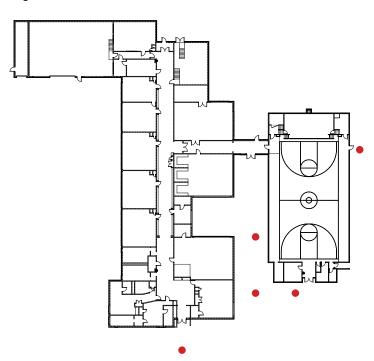
Elementary Buildings

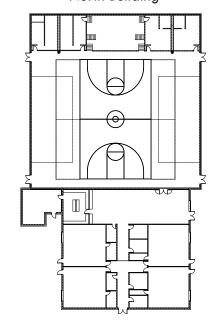
EXTERIOR

The concrete sidewalks in some instances are old or cracked.

RECOMMENDATION

Replace concrete sidewalk.





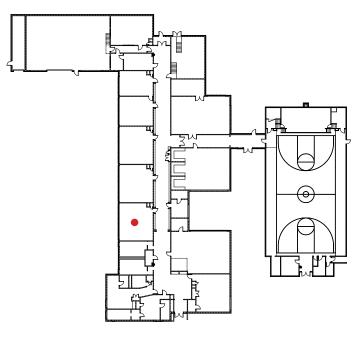
High School

Elementary Buildings

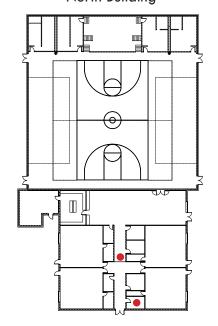
North Building

FINISHES

Tiles are damaged in a couple instances in the facilities.


RECOMMENDATION

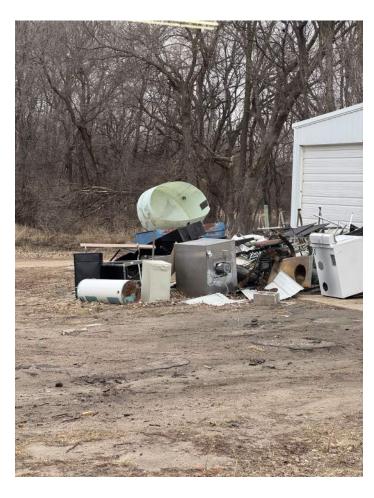
Replace damaged tiles.

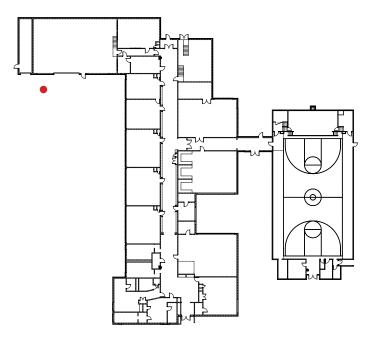


High School

Elementary Buildings

North Building

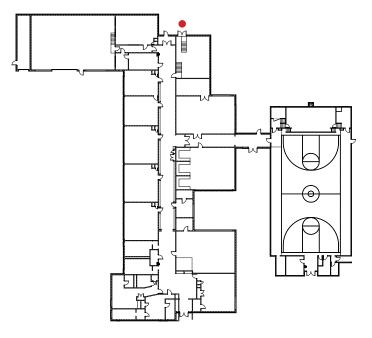


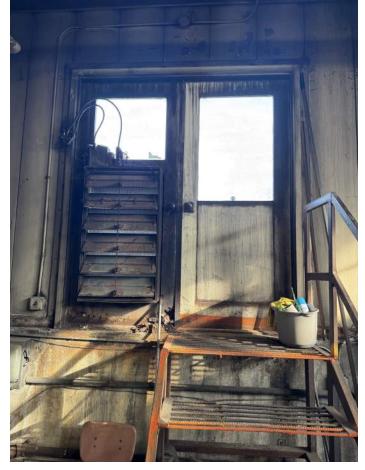

GROUNDS & MAINTENANCE

Outside of the shop there is a large pile of scrap metal and old equipment.

RECOMMENDATION

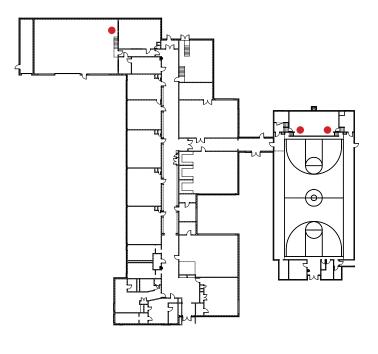
Dispose of materials and equipment.


EXTERIOR FINISHES


The north exterior double door to the mechanical room is rusted beyond repair.

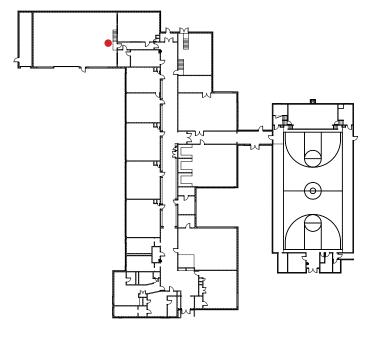
RECOMMENDATION

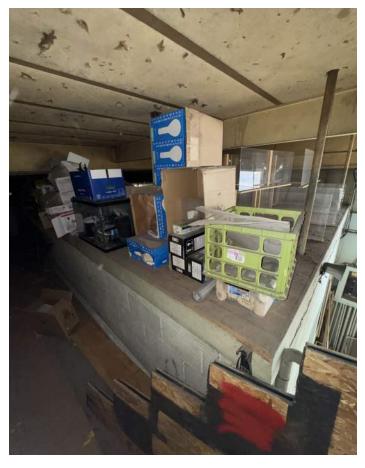
Replace metal doors or refinish.

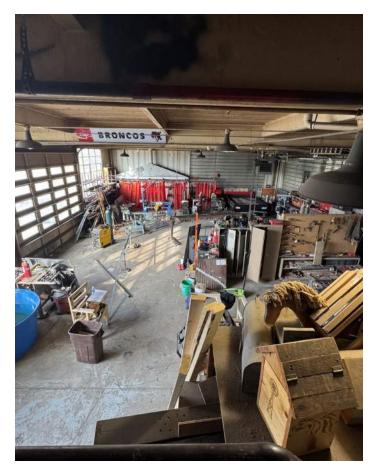

Stair railings are loose, missing or do not comply with the current code.

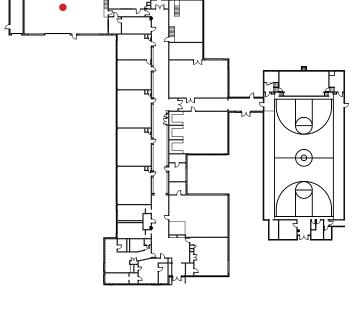
RECOMMENDATION

Install railings where missing and repair loose railings. Replace railings to comply with current code.


The shop storage mezzanine is cluttered and potentially unsafe.


RECOMMENDATION


Organize and clean the mezzanine storage and replace wooden flooring in walkway.



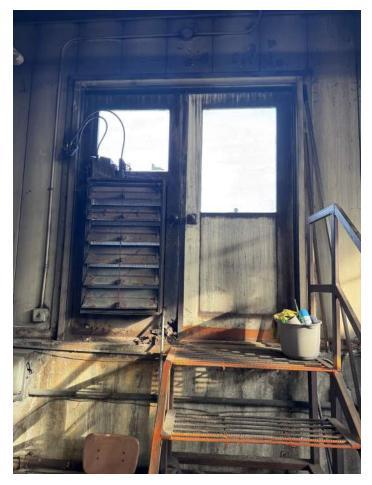
The shop is cluttered with no circulation paths. Machinery clearances are too close together, creating an unsafe environment. Conduit and receptacles are extruding from the concrete floor creating tripping hazards around machinery where apparent circulation paths exist. Welding booths and CNC plasma table area lack proper working space and storage. Areas around the welding booths are restrictive to movement of large pieces of metal and have large amounts of waste on the floor.

RECOMMENDATION

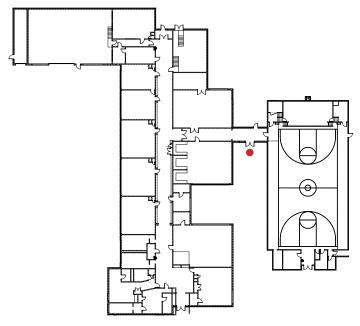
Shop space needs reorganization and a new layout for proper circulation and equipment use. Floors need cleaned and waste needs to be removed. Remove or augment exposed floor conduit to eliminate tripping hazards.




There are multiple exit locations that have damaged or missing exit signage.


RECOMMENDATION

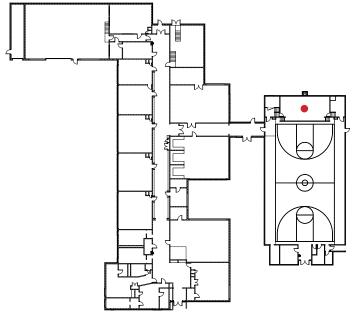
Replace all damaged or missing exit signs to comply with the current code. Test existing signage for illumination.

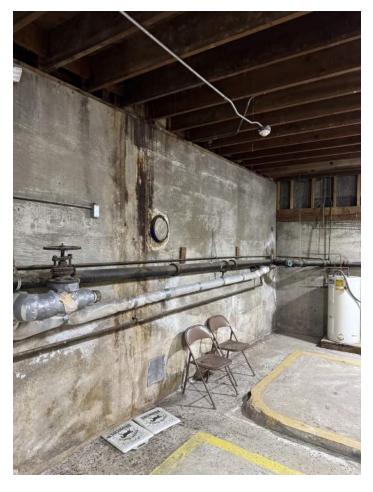


An existing exit door in the high school is blocked with what appears to be a metal security bar. This is a fire code violation when the building is occupied.

RECOMMENDATION

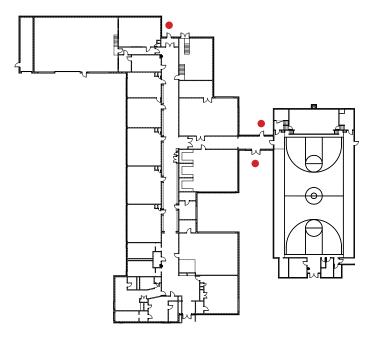
Remove security bar restricting proper exiting from the building.


LIFE SAFETY & SECURITY / ADA


The existing storm shelter under the stage does not meet current standards due to its construction and lack of accessibility.

RECOMMENDATION

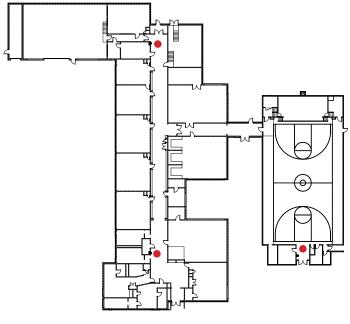
Consider adding a storm shelter component to a future addition the to the high school.


LIFE SAFETY & SECURITY / ADA

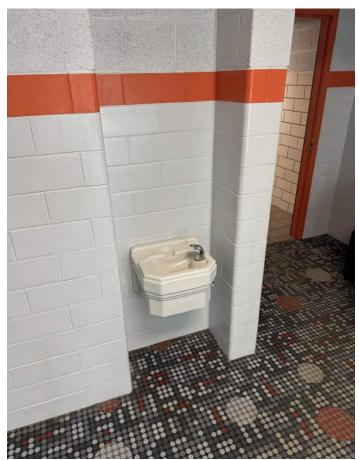
There are several instances where required exits have drops or staircases without ramps or railings.

RECOMMENDATION

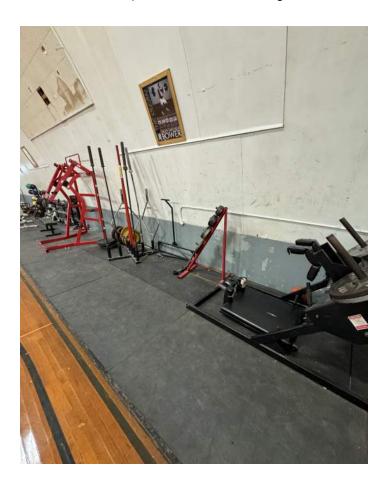
Add code compliant ramps and railings. Modify paving at exits with large drops to create smooth transitions and comply with current codes.

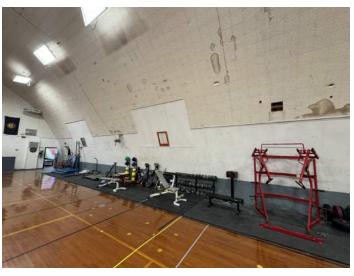

ADA

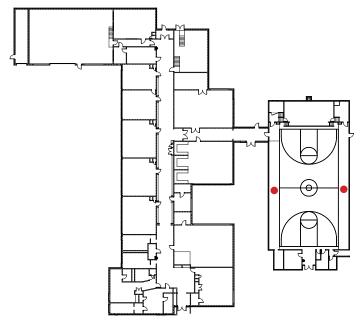
Existing water fountains are outdated and do not comply with current ADA guidelines.

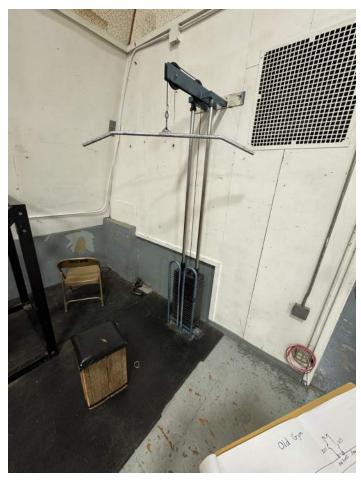

RECOMMENDATION

Replace existing outdated water fountains with new ADA compliant water fountains with water bottle filling stations.

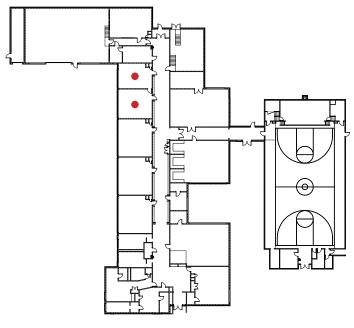


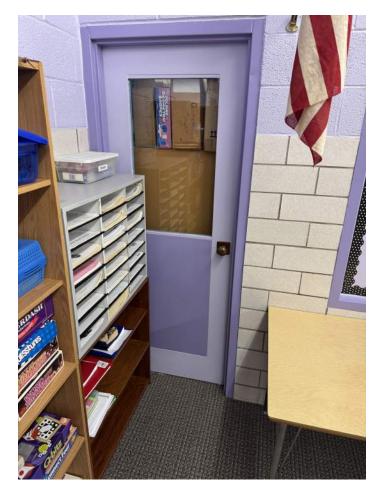

PROGRAM

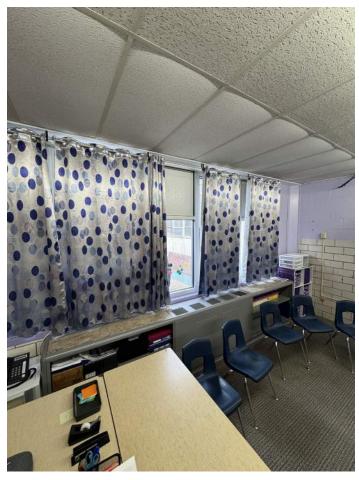

Currently part of the gym is used as a weight lifting area with and there is not a dedicated weight room.


RECOMMENDATION

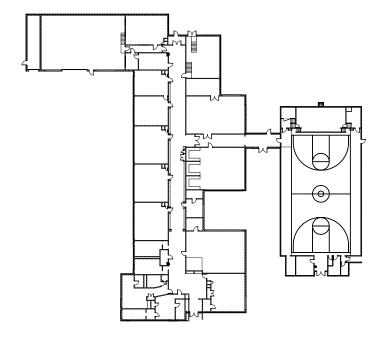
With the addition, add a dedicated weight room.


PROGRAM


Classrooms are undersized when compared to current standards contingent upon classroom utilization.


RECOMMENDATION

Consider adding classroom spaces /or modifying existing rooms.

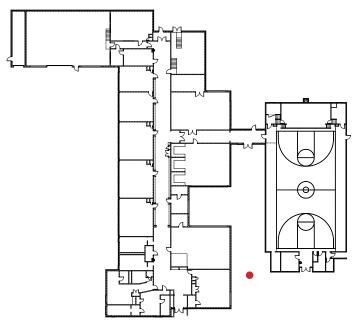


PROGRAM

It appears the campus lacks a dedicated nurse room. Students currently reside in the library when ill.

RECOMMENDATION

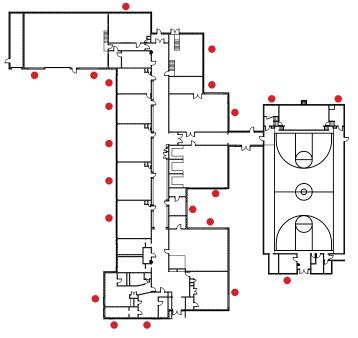
Consider adding a nurse room.


GROUNDS & MAINTENANCE

Stormwater appears to collect in a small area In between the old High School Gym and the High School along the sidewalk. Not only does the water pond over the sidewalk but it has caused the sidewalk to heave/displace in this area.

RECOMMENDATION

Install a drainage system or create a better channel for runoff to flow away from the buildings in this location. Replace or re-level concrete sidewalks to create an even walking surface.

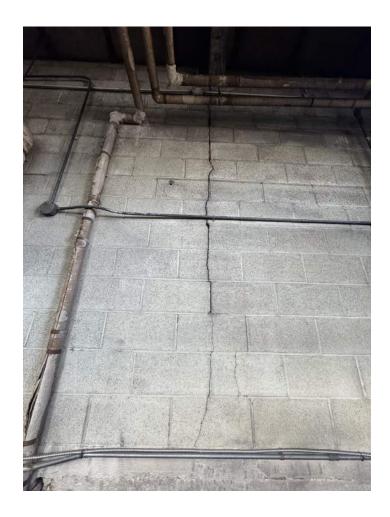

2 | BUILDING ENVELOPE / ADA / MAINTENANCE / PROGRAM HIGH SCHOOL - DEFICIENCIES

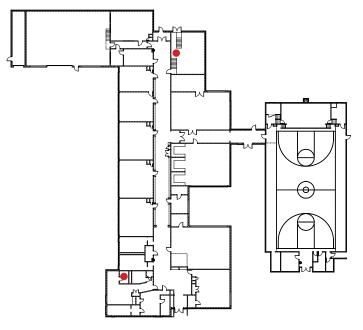
BUILDING SYSTEMS

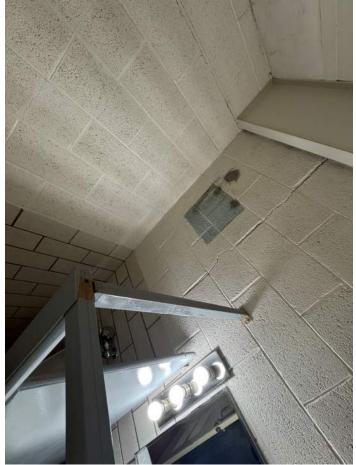
There are several instances of uninsulated, non thermally broken single pane windows.

RECOMMENDATION

Replace all single pane windows with double pane windows.

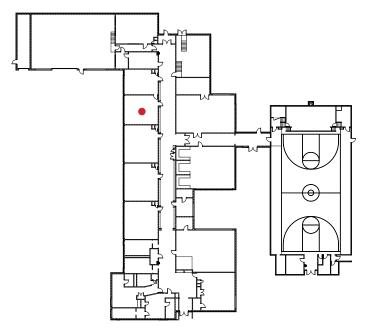

2 | BUILDING ENVELOPE / ADA / MAINTENANCE / PROGRAM HIGH SCHOOL - DEFICIENCIES

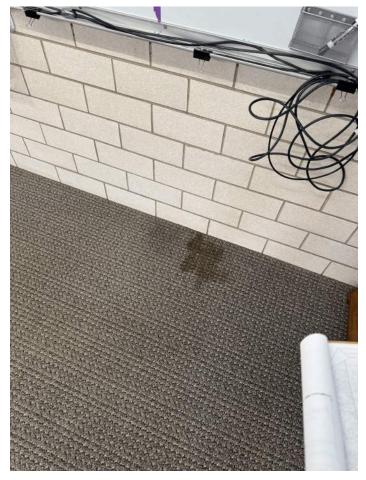

BUILDING SYSTEMS


There are two instances of cracked mortar along CMU.

RECOMMENDATION

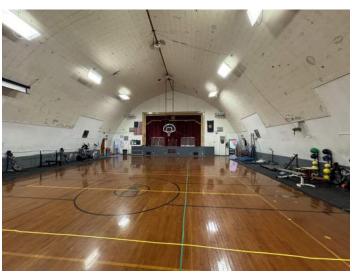
Clean cracks and seal.

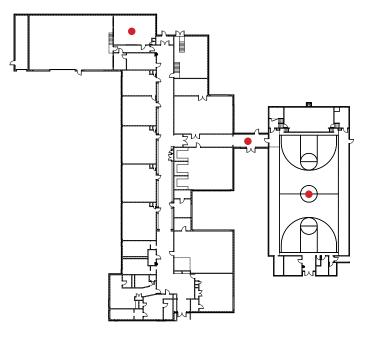

FINISHES


Carpet in some rooms has significant signs of wear and/or staining.

RECOMMENDATION

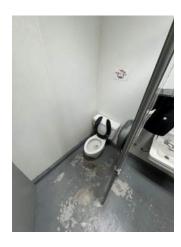
Replace carpet.


FINISHES

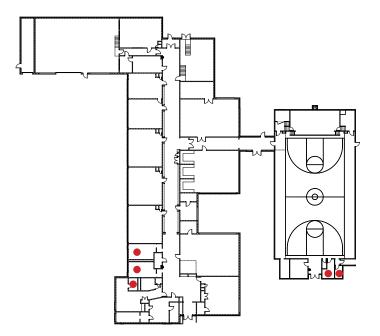

In the gym, ag classroom, and connection link, there is outdated ceiling tile that is stained, damaged, and falling off of the ceiling.

RECOMMENDATION

Remove and replace ceiling tiles.


2 | BUILDING ENVELOPE / ADA / MAINTENANCE / PROGRAM HIGH SCHOOL - DEFICIENCIES

FINISHES

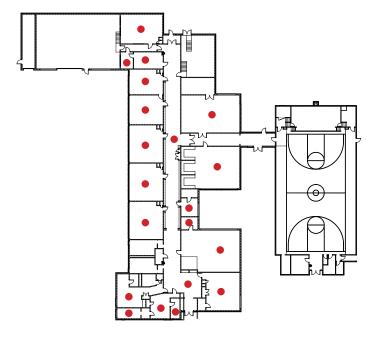

Bathroom partitions are outdated.

RECOMMENDATION

Replace all outdated partitions.

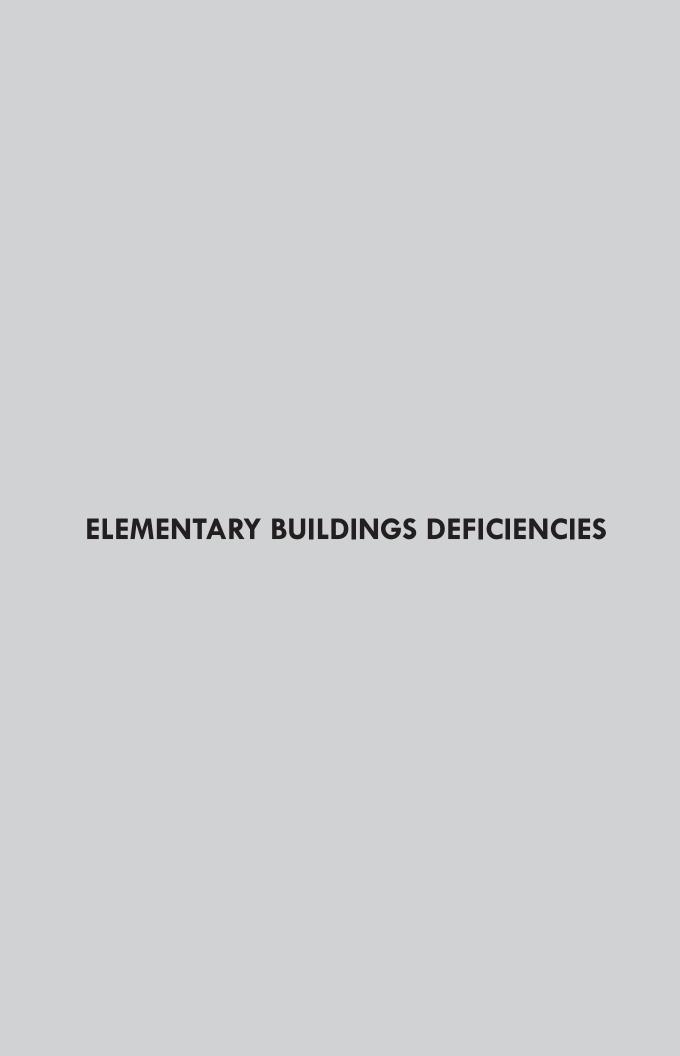
2 | BUILDING ENVELOPE / ADA / MAINTENANCE / PROGRAM HIGH SCHOOL - DEFICIENCIES

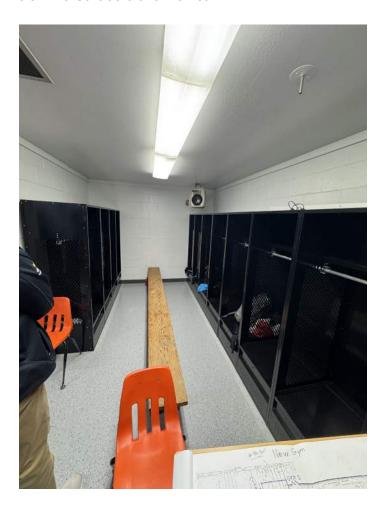
FINISHES


A majority of the acoustic ceiling panels in the high school building are damaged, stained, sagging, or missing.

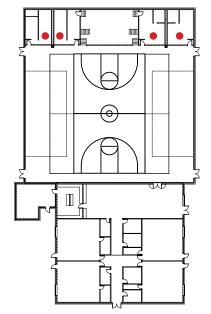
RECOMMENDATION

Replace ceiling panels in their entirety.





LIFE SAFETY & SECURITY


The existing locker rooms in the North Elementary building are the current storm shelter locations for both elementary buildings. The doors to the locker rooms are not storm rated. Students and faculty seeking shelter in the South Elementary building must go outside to get to the existing storm shelter.

RECOMMENDATION

Consider replacing the existing locker room doors with storm rated doors and frames.

North Building

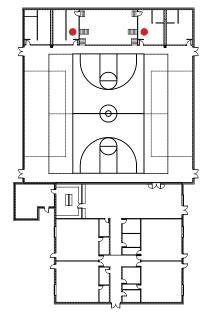
South Building

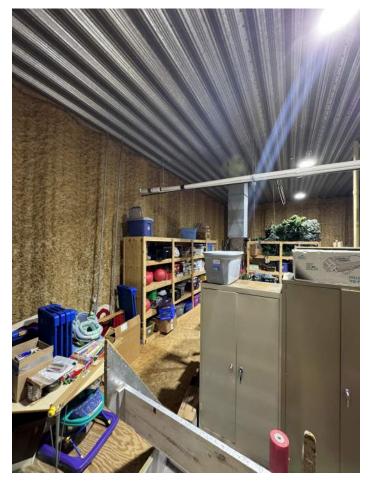
LIFE SAFETY & SECURITY

The existing upper-level storage above the stage in the North Elementary building has a 1/2" plywood deck throughout both rooms creating a potentially concerning condition. Walking on the flooring causes noticeable displacement decking. Certain areas with heavy storage are largely exceeding 1/2" plywood load capacities.

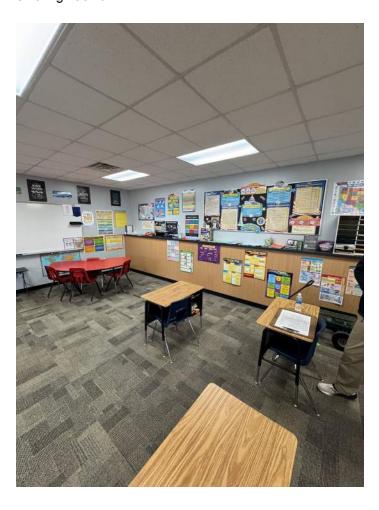
RECOMMENDATION

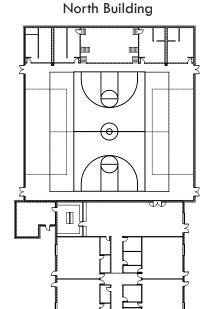
Replace 1/2" plywood with 3/4" plywood tongue and groove and properly support.

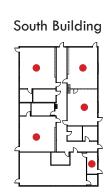




North Building

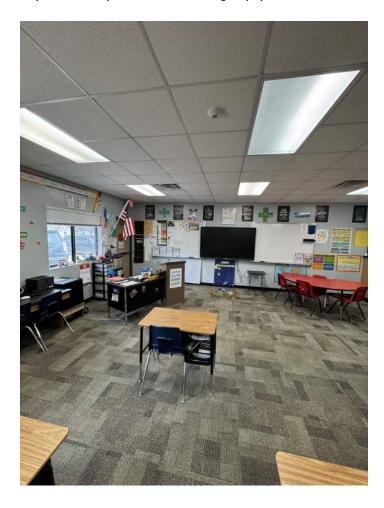

2 | BUILDING ENVELOPE / ADA / MAINTENANCE / PROGRAM **ELEMENTARY BUILDINGS - DEFICIENCIES**

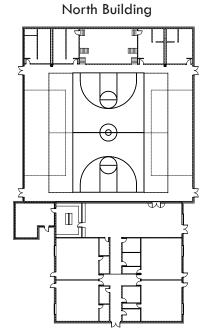

PROGRAM


Classrooms in the South Elementary undersized when compared to current standards contingent upon classroom utilization.

RECOMMENDATION

Consider adding classroom spaces /or modifying existing rooms.



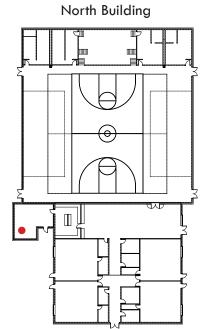

BUILDING SYSTEMS

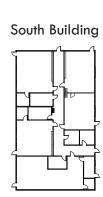
The northwest classroom in the South Elementary building has a light fixture that is not operational.

RECOMMENDATION

Replace or repair malfunctioning equipment.

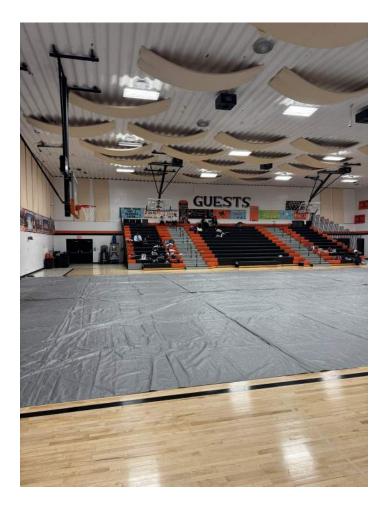
2 | BUILDING ENVELOPE / ADA / MAINTENANCE / PROGRAM **ELEMENTARY BUILDINGS - DEFICIENCIES**

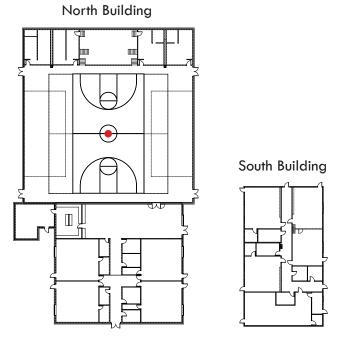

BUILDING SYSTEMS

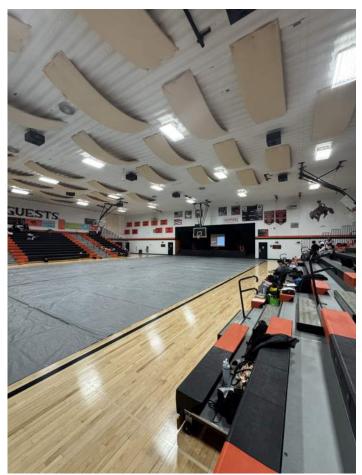

There is only one hand wash sink in the kitchen.

RECOMMENDATION

Install a second hand-wash sink at minimum.

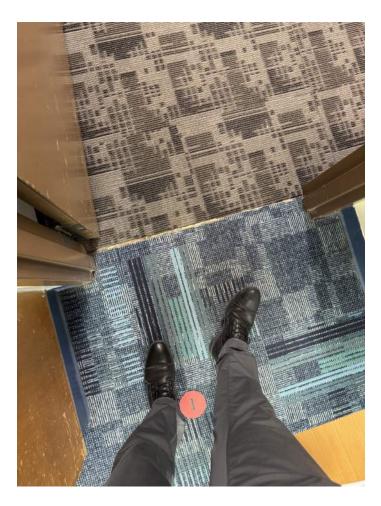


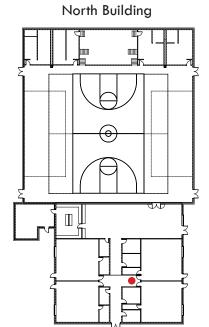

BUILDING SYSTEMS


The existing North Elementary building gym lacks proper air circulation.

RECOMMENDATION

Install fans to circulate the air.


2 | BUILDING ENVELOPE / ADA / MAINTENANCE / PROGRAM **ELEMENTARY BUILDINGS - DEFICIENCIES**

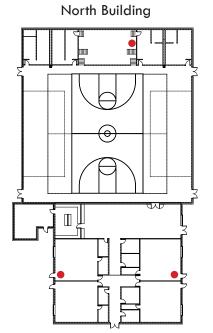

FINISHES

There is a missing transition threshold in the North Elementary building between a classroom and corridor.

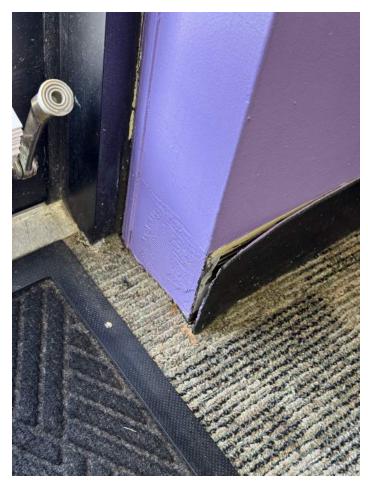
RECOMMENDATION

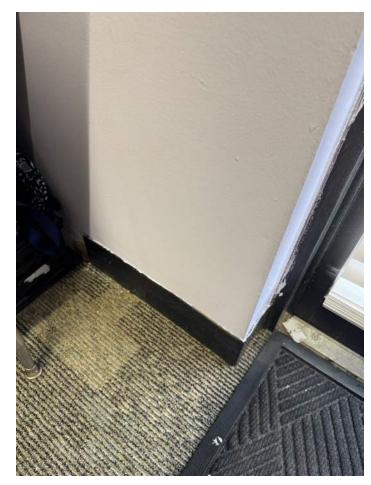
Install transition thresholds where needed.

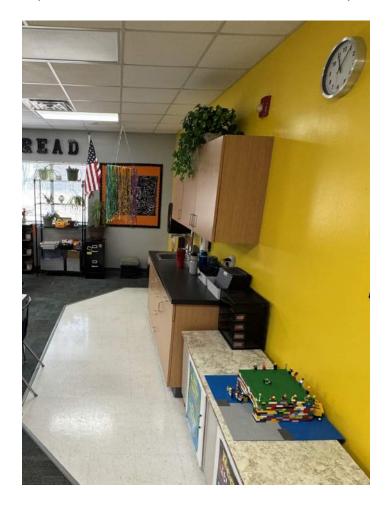
2 | BUILDING ENVELOPE / ADA / MAINTENANCE / PROGRAM **ELEMENTARY BUILDINGS - DEFICIENCIES**


FINISHES

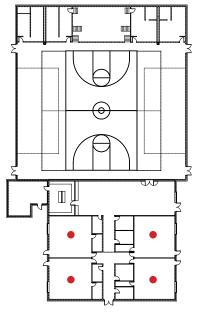
Wall base in some instances is missing, torn away, or damaged.


RECOMMENDATION


Replace wall base.



FINISHES


Existing casework in several classrooms is old and has significant signs of wear and chipping. Some instances of classroom casework are underutilized or too tall for the dedicated age group of students occupying the space.

RECOMMENDATION

Replace all casework and sink units where necessary.

North Building

South Building

3 | MECHANICAL & ELECTRICAL SYSTEMS EVALUATION

PURPOSE OF EVALUATION

Engineering Technologies, Inc, was on site to do an evaluation of the existing mechanical and electrical systems at the Elementary and High School facilities in Bartlett Nebraska.

Information contained in this report relates to the adequacy of the existing mechanical and electrical systems, condition of equipment, code deficiencies, and life safety issues related to the existing systems.

Data for this report was based on casual field observations. Existing drawings were not available at the time of observation. Existing conditions were documented and our findings and recommendations have been included as a part of this engineering evaluation.

GENERAL INFORMATION

Wheeler Central Public Schools consists of four main buildings that house the high school and elementary schools. The original high school was built in 1954 and has since been connected to the original gym structure that was built in 1950. The 1954 building also included an enclosed walkway to the original gym. The building that houses the new gym, kitchen, and lower elementary classrooms was built in 1978. A newer building to serve upper elementary students was constructed in 2010.

HIGH SCHOOL FACILITY

MECHANICAL DEFICIENCIES

> A. HEATING COOLING, & VENTILATION SYSTEMS

The original high school building is heated by a low-pressure steam system that has steam supplied from two Aldrich/LES boilers producing 1,000 MBH of heating each. These two boilers where both installed in 2007. The two boilers are fueled from an exterior, buried diesel tank. The diesel tank and associated fuel piping has been replaced in recent years. A louver is installed to provide combustion air into the main boiler room. The current steam pipes are routed through a tunnel that extends around the perimeter of the high school building and the piping insulation appears to have fittings with asbestos. Low pressure steam is routed to several 1954 original Modine cabinet unit heaters throughout the building that provide heating. The boilers do have an emergency shutoff switch outside of the boiler room.

LOW-PRESSURE STEAM BOILERS

Classrooms have original unit ventilators that provided heating and ventilation to them. The fresh air dampers have been closed so the ventilators may keep up with heating, but they don't appear to now be providing fresh air to the classrooms. Each classroom is also provided with a window air conditioning unit to cool the spaces. It is unsure if the window units are adequate at cooling and dehumidifying the classrooms and they are not the most efficient equipment.

The shop space has primary heating coming from propane Hastings unit heaters. These heaters were installed after original construction. The original steam heaters on the north side of the shop appear to be shut off and abandoned. There is a wall-mounted exhaust fan on the north wall of the shop. It has been installed after the original building and has been recently repaired by maintenance staff. It is estimated that the exhaust fan does not provide enough exhaust air to adhere to current ASHRAE Indoor Air Quality Standards. The welding fume hood also appears to have been provided with the original building. The hood is too small to serve additional welding booths that have been constructed. Currently, the only fresh air entering the shop space occurs when the exterior door is propped open. It was discussed that welding fumes have previously entered the main corridor of the high school. The shop classroom is also conditioned with a PTAC unit. The unit appears to be approximately ten years old and the unit's chassis has damage to it.

The original 1950 gym is currently conditioned by two gas propane furnaces. These two units do not have capacity to cool the space. They were installed in 2010 and appear to be in working order but are nearing their end of serviceable life. Each furnace is controlled via a stand-alone Lennox programmable thermostat. There is currently no ventilation in the original gym, nor the locker rooms. Ductwork and the fan serving the locker rooms was previously removed.

> B. PLUMBING SYSTEMS

There are two domestic water services into the facility. The original school has a 1-1/2" cast iron pipe service and meter that transitions to copper located in the south ignitorial closet. There are no backflow prevention devices at the water service or at the ice maker located in the corridor. There appears to be a main shutoff valve at the meter. The 1950 gym has a separate water service. Both buildings have original copper water piping that appears to be in decent condition, and some PEX water piping has been installed in short lengths to serve fixtures that have previously been replaced. There is not any significant portion of insulation on any water piping in either building, but where there is some, it appears to possibly have asbestos on the pipe fittings.

PROPANE SHOP HEATER

SHOP CLASSROOM PTAC

SHOP CLASSROOM PTAC

Sanitary sewer lines are original to the building and their additions and they appear to be mostly cast-iron construction, with some PVC in remodeled areas. The majority of the vent piping appears to be galvanized steel. Most of the piping appears to still be in good condition. There is water pooled in an original drain hole in the main boiler room. There was discussion about some issues with a collapsed sanitary pipe somewhere towards the southern end of the building so this should be further studied to determine reliability of the drainage system. The ice maker in the corridor has a direct sanitary connection for drainage.

The restrooms in the high school building have been upgraded and fixtures appear to be in good condition. There are some ADA measures taken, such as fixture

GYM RESTROOM FIXTURES

mounting heights and stall sizes. Other ADA requirements are absent throughout both buildings, such as piping insulation kits on exposed piping. The older restrooms in the gym building also have some updated fixtures as well.

The domestic water heaters for the facility are located in the main boiler room and in the staff lounge. The water heater in the staff lounge serves the lounge are restrooms at the southern end of the original high school. The heater in the boiler room serves the northern end, including the shop space. The water heaters appear to be approximately 15 years old and near the end of their serviceable life. There is no hot water recirculation piping system or pump for either water heater and it was discussed that it takes a considerable amount of time for hot water to reach certain fixtures.

> C. FIRE SPRINKLER SYSTEMS

The High School and original gym building do not currently have a fire sprinkler system.

> D. MECHANICAL RECOMMENDATIONS

The priority for the high school and elementary school should be providing adequate indoor air quality for students and faculty. Exhaust air should be provided in spaces that are humid or have unwanted vapor or fumes. This includes restrooms, the gym space, shop, welding hood, janitorial space, and boiler room. Fresh air should be provided into classrooms and other support spaces occupied by students or faculty.

The below grade sanitary lines should be scoped and more closely inspected. This would provide insight into the slow drainage issue present and check the condition of the original cast iron piping. Results from this could determine if any repairs are necessary.

New central heating and cooling should be considered to serve the entirety of both spaces. It would be possible to keep the existing steam boilers, but a hot water heating system should be considered. The transition from window air conditioners to a more efficient central cooling system would reduce annual utility costs.

Piping insulation should be added to lower utility costs and to adhere to current energy codes. It is unsure to what extent asbestos insulation is present in the building, so a study of the building should be done.

ADA upgrades should be done to bring restroom fixtures up to code. Piping insulation kits should be provided as necessary at sinks and lavatories.

A fire sprinkler system should be installed in both buildings for life safety reasons.

ELECTRICAL

> A. ELECTRICAL SERVICE & DISTRIBUTION

The original building is served by a utility company pole-mounted transformer. The secondary electrical service extends below grade, from the pole-mounted transformer to main disconnects located in a janitor closet near the main entrance.

Two 400-amp disconnects are present within a janitor closet that appear to serve as the main electrical disconnects for the building. One main disconnect appears to serve a 400-amp Square D distribution panel, in the same room. The second main disconnect is believed to serve the 400-amp Westinghouse distribution panel in the old gym. Both disconnects are original to the 1954 building and the manufacturer is Square D. Utilization voltage is 240V, 1-phase, 3-wire. A single point grounding system, bonded to all available grounding electrodes does not appear to have been provided as required by current codes. Documentation noting the available fault current at each disconnect has not been provided. Short circuit current ratings (SCCR) could not be determined.

Distribution panels and lighting and appliance panelboards are original to the 1954 building. A few load centers have been added and some panelboards have been retrofitted in place. One load center installed within the entry janitor closet has breakers installed above 6'-7", which does not meet the electrical code. A 1954 vintage 400-amp Square D distribution panel is present in the janitor closet with the main disconnects that appears to serve panelboards throughout the high school. The old gym has a 400-amp Westinghouse distribution panel that appears original to 1950. Physical capacity for expansion does not appear to be available. Breaker kAIC ratings were not visible. Circuit directories were missing on most panels.

HIGH SCHOOL POLE MOUNTED TRANSFORMER

MAIN DISCONNECTS

HIGH SCHOOL DISTRIBUTION PANEL

OLD GYM DISTRIBUTION PANEL

HIGH SCHOOL TYPICAL PANELBOARD

ADDED LOAD CENTERS

> B. LIGHTING & LIGHTING CONTROLS

Lighting throughout consists of fluorescent based prismatic troffer and surface linears with baffles that have been retrofitted to LED. Back of house spaces have industrial light fixtures that were incandescent based and have since been retrofitted with CFL or LED screw-based lamps. Some T8 fluorescent lamps remain in existing fixtures. Staff noted that as original fixtures fail, then have been converted to LED. The old gym has T5HO highbay light fixtures. The Correlated Color Temperature (CCT) is 4100K.

OLD GYM LIGHTING

HIGH SCHOOL TYPICAL CORRIDOR LIGHTING

Exterior lighting consists of building mounted LED wallpacks or incandescent based wall sconces with LED lamps. Parking lot lighting is not present. Lighting is not full cut-off.

HIGH SCHOOL TYPICAL EXTERIOR ENTRY LIGHTING

EXTERIOR WALLPACKS

Exit signs are present throughout the building, but deficient in coverage. Some exit signs consist of non-illuminated signage or older models with incandescent lamps.

HIGH SCHOOL ILLUMINATED EXIT SIGN

Emergency lighting was found to be provided by emergency lighting units with adjustable LED lamps, but coverage was deficient. Interior emergency egress lighting and the quantity of exit signage is not adequate in several areas. Exterior emergency egress lighting does not appear to be provided, as required by current codes.

Interior lighting controls consisted of toggle switches. Occupancy sensors or other controls for interior lighting, as required by current State Energy Code, are not observed. Exterior lighting was controlled by a centralized timeclock.

NON-ILLUMINATED EXIT SIGN

EMERGENCY LIGHTING UNIT

> C. RECEPTACLES & BRANCH CIRCUITS

Most receptacles and branch circuits in the high school are in original condition and appear deficient in coverage. It did not appear that ground fault protection has been provided for all outlets within 6'-0" of a sink, wet location areas, or the kitchen, as required by current codes.

Tamper resistant receptacles were not present in circulation areas.

> D. FIRE ALARM

The fire alarm system is an older Pyrotronics model that is no longer supported. Fire alarm devices present in the building include smoke detectors throughout the corridors, manual pull stations at every exit door, and audible/visual devices throughout corridors. However, it does not appear that the system has a voice evacuation system, as required per current codes, nor is notification provided in classrooms or other areas outside of the corridors.

HIGH SCHOOL FIRE ALARM PANEL

TYPICAL HORN/STROBE COMBINATION DEVICE

> E. TELECOMMUNICATIONS, PAGING, CLOCKS & AUDIO/VISUAL

There is a wall mounted data rack and a floor mounted data rack in a classroom closet near the front of the building. This location serves as the communications service entrance and Main Distribution Frame (MDF) for the building. CAT 5 cabling is present. The room does have a dedicated cooling unit.

The existing structured cabling infrastructure and cabling installation methods do not meet current BICSI standards. Wi-Fi is provided throughout and is the primary means of data distribution throughout the facility.

HIGH SCHOOL DATA ROOM WITH WALL **RACK**

FLOOR MOUNTED RACK

WALLBOARD WITH PHONE SYSTEM

A Panasonic analog phone system is present that is no longer supported. Staff noted the phone system will soon be upgraded to VOIP.

A Viking based paging system is present with original speakers in the corridors and some classrooms. Coverage is deficient. Paging is initiated through the phone system.

A centralized and wired clock system is present, but has been abandoned. As a result, standalone battery-based clocks have been mounted over existing backboxes.

Classroom audio/visual equipment consist of wall mounted smartboards with touchscreens.

A gymnasium audio system was not present.

HIGH SCHOOL TYPICAL CORRIDOR **PAGING SPEAKER**

STAND-ALONE CLOCK

> F. SECURITY

A Wisenet based Access control system is present. Access controls are minimal as keypads with electrified locks are present at entry doors and select interior rooms. A voice only intercom station is present at the main entry. Remaining doors have mechanical locks that are not monitored on the access control system.

An on-premise Wisenet video surveillance system is present consisting of surveillance cameras in corridors for coverage throughout high traffic areas. Interior and exterior cameras are present. The cameras appear to be Power over Ethernet (PoE) networked types. Video storage is stored locally on a recorder within the floor mounted data rack.

HIGH SCHOOL ENTRY ACCESS CONTROLS

NETWORK CAMERA

> G. ELECTRICAL RECOMMENDATIONS

The expected life of common electrical equipment can be seen in the table below.

USEFUL LIFE OF ELECTRICAL EQUIPMENT	
Equipment Type	Expected Useful Life Period (Years)
Switchboards	30 to 40 years
Panelboards	30
Transformers	25 to 30
Motor Control Centers & Starters	20 to 30
Circuit Breakers	15 to 20 (Note 1)
SPDs	10 (Note 2)
Lightning Protection	25 to 30
Motors	18 to 25
Generators	15 to 20
Capacitors	17
VFD	20
UPS	10
Cable/Wiring	30 to 40
Lighting	20
Lighting Controls	15 to 20
Clocks	20
Paging	25
Access Controls	12
Video Surveillance	10
Audiovisual	10
Fire Alarm	10 to 15

Note 1: By year 10, 50% of circuit breakers don't function properly per manufacturer specs. By year 20, that increases to 90%.

Note 2: Life will be less if frequent surges are common.

Table References: ABB (GE), CDM (Eaton), Siemens, and IEEE Gold Book, Schneider Electric, NFPA, National Fire & Safety, National Time & Signal Company, IPVM, Sound & Communication

Power distribution panels, branch circuit panelboards, and the existing infrastructure is past it's useful life. Therefore, a complete replacement with a service upgrade will be required for any renovation or addition project.

Wiring and wiring devices are recommended to be replaced due to age and increased risk of failure. GFCI devices are recommended to be provided for outlets within 6'-0" of a sink, within kitchen areas, locker room areas, restrooms, and additional areas as required by the electrical code for personnel safety. Tamper resistant receptacles are recommended to be provided throughout for additional safety.

Energy efficient LED lighting is recommended to replace any of the remaining fluorescent light fixtures. Lighting controls that include vacancy sensors, occupancy sensors, daylight harvesting and dusk to dawn controls are recommended to be provided as part of a building wide lighting upgrade to satisfy energy codes required by the state.

A voice evacuation system is recommended to be added to an upgraded fire alarm system, along with additional devices to provide a code compliant system that also meets ADA requirements.

Modifying the existing data racks and cable installation to be BICSI compliant would be recommended to improve on the efficiency and growing needs of the technology requirements of an education facility. A dedicated telecommunications room for each building is recommended for building security and ease of access for current maintenance as well as ease of expansion in the future. Cabling is recommended to be replaced with CAT 6, at a minimum.

The access control and video surveillance systems are both modern systems that can be readily expanded upon as funds become available. It is recommended to add door monitoring to all perimeter doors to be able to detect an intrusion event and enhance the security of the facility. Replacing existing keypads with card readers would provide a more secure building and is recommended. Video intercom devices are recommended at entry doors for enhanced security.

ELEMENTARY SCHOOL FACILITY

MECHANICAL DEFICIENCIES

> A. HEATING COOLING, & VENTILATION SYSTEMS

The 1978 gym building is split into three distinct areas, each with their own method of conditioning the spaces. The first area is the gym and locker rooms at the north end. The gym is served by two heat-only propane furnaces. These are 15 years old and seem to be in good condition, but nearing the end of their service life. The locker rooms currently have original electric heaters. There is not exhaust air or fresh air in the gym or the locker rooms providing ventilation for those spaces.

The newly renovated kitchen and associated storage has a horizontal blower coil and condensing unit that provides heating and cooling. This equipment is approximately five years old and appears to be in fair condition. The kitchen has an exhaust air hood above the range. The fire marshal has made exception to the requirement of a Type 1 grease hood as it was stated that grease laden vapors are not produced on the range that it serves. A hood is not present above the dishwasher, allowing moisture and humidity to enter the space. There appears that fresh air is not provided to the space, providing makeup air for the hood.

The cafeteria space, and four classrooms are split into three zones and served by three original Rheem diesel fuel fired furnaces. The three furnaces are well past their serviceable lives. There are currently some leaks in the fuel piping serving these furnaces. The kitchen and storage room does have cooling capacity from a condensing unit on the west side of the building. Similar to the high school, each classroom is provided with window air conditioning units.

There appears to be no exhaust air evident in restrooms and janitorial spaces in the 1978 gym building.

The newer 2010 elementary school has split system heating and cooling for the entire addition. There are four Lennox propane furnaces with associated condensing units west of the building. The propane piping is connected to a propane tank west of the building. The units are provided with fresh air via an intake hood located on the roof. They are controlled by stand-alone Lennox programmable thermostats. There appears to be good thermal zone control in the 2010 building with the multiple units for those spaces.

ORIGINAL LOCKER ROOM HEATER

FRESH AIR DUCTWORK **SERVING 2010 BUILDING**

1978 CLASSROOM AND CAFETERIA DIESEL FURNACES

CONDENSING UNITS SERVING 2010 BUILDING

> B. PLUMBING SYSTEMS

Each building appears to have a dedicated water service with a meter, but no backflow preventer. The 1978 building has original copper piping running throughout. PEX water piping was observed where patches were required and to serve the updated kitchen space. There appears to be some piping insulation on copper hot water piping, but it is in poor condition. There is no piping insulation on any PEX piping located in the building. The building has two original 27 KW electric water heaters, which appear to have been manufactured in 1976. They appear to be in good condition, but are well past their serviceable life.

The 2010 elementary building consists of mostly PEX and copper water piping. There is no piping insulation visible. The 40-gallon propane water heater is approximately 15 years old and appears to be in fair condition. The restroom serving the four north elementary classrooms was remodeled in the summer of 2024.

Sanitary sewer lines are original to both buildings and appear to be mostly PVC construction. Those systems appear to be in good condition. Exterior cleanouts are visible for both buildings. The three compartment sink and dishwasher both have indirect drains that are routed to above a floor drain, which is code compliant. There is not a floor drain in the mechanical room housing the diesel furnaces.

The original restrooms fixtures appear to be in fair condition. There are no ADA piping insulation guards on any of the required fixtures.

ORIGINAL 1978 GYM WATER HEATER

ORIGINAL 2010 ELEMENTARY

> C. FIRE SPRINKLER SYSTEMS

The 1978 and 2010 buildings do not have an automatic fire sprinkler system.

> D. MECHANICAL RECOMMENDATIONS

Fresh air and exhaust air should be provided throughout both buildings to provide adequate ventilation. Exhaust air should be present in locker rooms, restrooms, janitorial spaces. Fresh air is provided in the 2010 building but should be in the 1978 building as well.

The three diesel furnaces should be considered for replacement. If they are to be replaced with similar units, outdoor air should be supplied to the units directly to avoid atmospheric venting inside the mechanical room.

The water heaters should also be considered for replacement. Currently, a 49-year old water heater is serving the kitchen that serves both buildings.

Piping insulation should be installed on domestic water lines to reduce the risk of condensation forming on cold water and to reduce heat loss in hot water piping. Current energy codes require the insulation on the hot water piping systems.

ADA upgrades should be explored to bring restrooms up to code. Piping insulation kits should be provided as necessary to sinks and lavatories.

A fire sprinkler system should be considered in both buildings.

ELECTRICAL

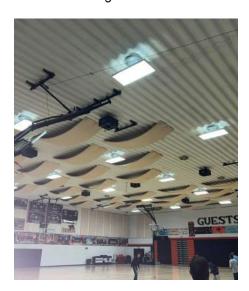
> A. ELECTRICAL SERVICE & DISTRIBUTION

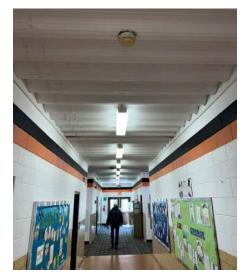
The 1978 gym building is served by a utility company pole-mounted transformer, located on the north side of the building. The secondary electrical service extends overhead, from the pole-mounted transformer to a large splice cabinet at the back wall of the stage. Four (4) main disconnects for the gym facility are present that vary between fused disconnect switches and panelboards with main breakers. Utilization voltage is 120/208V, 3-phase, 4-wire. A single point grounding system, bonded to all available grounding electrodes does not appear to have been provided as required by current codes. Documentation noting the available fault current at each disconnect has not been provided. Short circuit current ratings (SCCR) could not be determined.

NEW GYM BUILDING MAIN DISCONNECTS

Square D equipment is present for disconnect switches and panelboards throughout the gym and appear to be original to 1978. Equipment appears to be in fair condition. Typewritten circuit directories are not present.

The 2010 building is also served by a utility company pole-mounted transformer, located along the east side of the building. The secondary electrical service extends underground, from the pole-mounted transformer to two panelboards, each with a main breaker, that serve as the building main disconnects. Utilization voltage is 120/240V, 1-phase, 3-wire. A single point grounding system, bonded to all available grounding electrodes does appears to have been provided. Documentation noting the available fault current at the panels has not been provided. Short circuit current ratings (SCCR) are visible.


The service entrance panelboards also provide power distribution throughout the 2010 building. This equipment appears to be in good condition. Square D equipment is present for disconnect switches and panelboards throughout and appear to be original to 2010. Equipment appears to be in fair condition. Typewritten circuit directories are present.



2010 ELEMENTARY SCHOOL BUILDING ELECTRICAL SERVICE ENTRANCE EQUIPMENT

> B. LIGHTING & LIGHTING CONTROLS

Fluorescent lighting was used throughout most of the interior of the 1978 gym/elementary building with some newer LED flat panels present. Existing fluorescent based light fixtures have been retrofitted to LED as lamps and drivers fail. The gym has T5HO high bay light fixtures. The 2010 elementary building also has 2x4 T8 fluorescent based light fixtures that have been converted to LED as lamps and drivers fail. The Correlated Color Temperature in both buildings is 4100K.

TYPICAL LIGHTING IN THE 1978 GYM/ELEMENTARY BUILDING

2010 BUILDING

Exterior lighting on the 1978 gym/elementary building consists of building mounted wallpacks, however, their lamp source was not determined. Lighting is not full cut-off. Exterior lighting on the 2010 building consists of recessed LED downlights around the perimeter of the building.

Parking lot lighting is not present for either building.

Exit signs are present in both buildings, but coverage is deficient in the 1978 building. Emergency lighting is also present for the interior of both buildings, but is also deficient in the 1978 building. Exterior emergency egress lighting could not be confirmed.

Interior lighting controls consists of individual wall switches only for the 1978 gym/elementary building. The 2010 building does have occupancy sensors present in most spaces.

> C. RECEPTACLES & BRANCH CIRCUITS

Most receptacles and branch circuits in both buildings are in fair condition and appear adequate. It did appear that ground fault protection has been provided for all outlets within 6'-0" of a sink, wet location areas, or the kitchen, as required by current codes.

Tamper resistant receptacles were not present in the elementary classrooms and circulation areas as required by the current NEC Code.

> D. FIRE ALARM

The fire alarm system in the 1978 gym/elementary building is an older Pyrotronics model that is no longer supported. Fire alarm devices present in the building include smoke detectors throughout the corridors, manual pull stations at corridor exit doors, and audible/visual devices throughout corridors. Coverage and detection are missing in the gym and classrooms. Also, it does not appear that the system has a voice evacuation system, as required per current codes, nor is notification provided in classrooms or other areas outside of the corridors.

The fire alarm system in the 2010 elementary building is a modern Firelite MS-9050UD system with manual pull stations at every exit door, smoke detection throughout, and audible and visual notification throughout. The system appears to meet current code for coverage and devices present.

TYPICAL EXTERIOR WALLPACK ON THE 1978 BUILDING

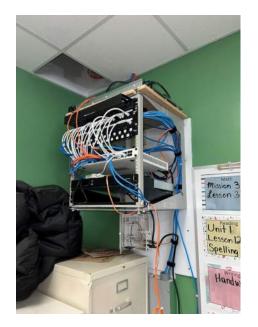
RECESSED DOWNLIGHT ON THE 2010 BUILDING

EXISTING FIRE ALARM CONTROL PANEL IN THE 1978 BUILDING

> E. TELECOMMUNICATIONS, PAGING, CLOCKS & AUDIO/ VISUAL

There is a wall mounted data rack, in the breakroom of the 1978 gym/elementary building. This location serves as the communications service entrance and Main Distribution Frame (MDF) for the building. In the 2010 building there is a wall mounted data rack in the northeast classroom that serves a similar purpose. CAT 5 cabling is present throughout with Wireless Access Points (WAP) in corridors. The phone system is being upgraded to VOIP. The phone system is used for paging needs to only phones. Paging speakers are not present.

The existing structured cabling infrastructure and cabling installation methods do not meet current BICSI standards. Wi-Fi is provided throughout and is the primary means of data distribution throughout the facility.


A centralized clock system is not present. Standalone battery-based clocks are used throughout both buildings.

EXISTING DATA RACK IN THE 1978 BUILDING

Classroom audio/visual equipment consist of wall mounted smartboards with touchscreens.

Only the 1978 gym has an audio system present. A modernized system was installed about 6-years ago with newer head end equipment installed in a wall mounted rack on the stage. The gym speakers are original but still in fair condition.

2010 BUILDING

EXISTING AUDIO EQUIPMENT RACK IN THE 1978 BUILDING

GYM SPEAKERS

> F. SECURITY

A Wisenet based Access control system is present. Access controls are minimal as keypads with electrified locks are present at entry doors.

An on-premise Wisenet video surveillance system is present consisting of surveillance cameras in corridors for coverage throughout high traffic areas. Interior and exterior cameras are present. The cameras appear to be Power over Ethernet (PoE) networked types. Video storage is stored locally in the data rack.

NEWER CARD READER AT AN EXTERIOR DOOR AT THE 1978 BUILDING

OLDER KEYPAD ON THE 2010 EXTERIOR DOOR

> G. ELECTRICAL RECOMMENDATIONS

The expected life of common electrical equipment can be seen in the table below.

USEFUL LIFE OF ELECTRICAL EQUIPMENT		
Equipment Type	Expected Useful Life Period (Years)	
Switchboards	30 to 40 years	
Panelboards	30	
Transformers	25 to 30	
Motor Control Centers & Starters	20 to 30	
Circuit Breakers	15 to 20 (Note 1)	
SPDs	10 (Note 2)	
Lightning Protection	25 to 30	
Motors	18 to 25	
Generators	15 to 20	
Capacitors	17	
VFD	20	
UPS	10	
Cable/Wiring	30 to 40	
Lighting	20	
Lighting Controls	15 to 20	
Clocks	20	
Paging	25	
Access Controls	12	
Video Surveillance	10	
Audiovisual	10	
Fire Alarm	10 to 15	

Note 1: By year 10, 50% of circuit breakers don't function properly per manufacturer specs. By year 20, that increases to 90%.

Note 2: Life will be less if frequent surges are common.

Table References: ABB (GE), CDM (Eaton), Siemens, and IEEE Gold Book, Schneider Electric, NFPA, National Fire & Safety, National Time & Signal Company, IPVM, Sound & Communication

Power distribution panels, branch circuit panelboards, and the existing infrastructure is past it's useful life in the 1978 gym/elementary building and are recommended to be replaced/upgraded as part of any future work. Additionally, the (4) main disconnects present do not meet current codes. It is recommended for the electrical service to be upgraded to a usable voltage that would allow a reasonably sized single main building disconnect.

The 2010 building's power distribution is in good condition and no upgrades are recommended at this time.

Wiring and wiring devices are recommended to be replaced due to age and increased risk of failure within the 1978 building. GFCI devices are recommended to be provided for outlets within 6'-0" of a sink, within kitchen areas, locker room areas, restrooms, and additional areas as required by the electrical code for personnel safety. Wiring and wiring devices observed in the 2010 building appear to be in good condition. Tamper resistant receptacles are recommended to be installed throughout both buildings to meet current codes.

Energy efficient LED lighting is recommended to replace any of the remaining fluorescent light fixtures. Lighting controls that include vacancy sensors, occupancy sensors, daylight harvesting and dusk to dawn controls are recommended to be provided as part of a building wide lighting upgrade to satisfy energy codes required by the state. Controls within the 2010 building appear to be code compliant.

A voice evacuation system is recommended to be added to an upgraded fire alarm system, along with all devices to provide a code compliant system that also meets ADA requirements in the 1978 building. The fire alarm system in the 2010 building appears to meet current codes, therefore, no recommendations are being made at this time for this building.

Modifying the existing data racks and cable installation to be BICSI compliant would be recommended to improve on the efficiency and growing needs of the technology requirements of an education facility. A dedicated telecommunications room for each building is recommended for building security and ease of access for current maintenance as well as ease of expansion in the future. Cabling is recommended to be replaced with CAT 6, at a minimum.

The access control and video surveillance systems are both modern systems that can be readily expanded upon as funds become available. It is recommended to add door monitoring to all perimeter doors to be able to detect an intrusion event and enhance the security of the facility. Replacing existing keypads with card readers would provide a more secure building and is recommended. Video intercom devices are recommended at entry doors for enhanced security.

OPINION OF PROBABLE CONSTRUCTION COSTS - HIGH SCHOOL & OLD GYM Costs do not include project contingency or design fees

MECHANICAL

1. Provide new HVAC System Throughout Facility	\$1,170,000
2. Provide a new Temperature Control System	\$80,000
3. Install New Dust Collector in Wood Shop and New Welding Exhaust System	\$175,000
4. Replace Plumbing Fixtures	\$60,000
5. Provide a New Fire Sprinkler System Throughout Facility	\$120,000
Mechanical Total:	\$1,605,000
ELECTRICAL	
1. Electrical Demolition	\$41,300
2. Electrical Service Upgrade	\$110,400
3. Feeder/Branch Circuit Wiring Upgrades	\$226,500
4. Interior Lighting, Exterior Lighting, Controls Upgrades	\$153,400
5. Fire Alarm Upgrade to Voice Evacuation, per Code	\$168,500
6. Telecommunications Infrastructure Upgrade	\$105,000
7. Paging System Upgrades	\$9,000
8. New Clock System - Wireless	\$7,000
9. Access Controls and Video Surveillance Upgrades	\$145,000
Electrical Total:	\$966,100

OPINION OF PROBABLE CONSTRUCTION COSTS - 1978 ELEMENTARY & 1978 GYM Costs do not include project contingency or design fees

MECHANICAL

1. Replace HVAC Equipment in 1978 Building (less Kitchen)	\$346,000
2. Replace Domestic Hot Water Heaters	\$20,000
3. Insulate Domestic Water Piping	\$70,000
4. Replace Plumbing Fixtures	\$40,000
5. Provide a New Fire Sprinkler System Throughout Facility	\$120,000
Mechanical Total:	\$596,000
ELECTRICAL	
1. Electrical Demolition	\$40,000
2. Electrical Service Upgrade	\$66,000
3. Feeder/Branch Circuit Wiring Upgrades	\$140,000
4. Interior Lighting, Exterior Lighting, Controls Upgrades	\$153,000
5. Fire Alarm Upgrade to Voice Evacuation, per Code	\$120,500
6. Telecommunications Infrastructure Upgrade	\$100,000
7. Paging System Upgrades	\$8,000
8. New Clock System - Wireless	\$6,000
9. Access Controls and Video Surveillance Upgrades	\$133,000

Electrical Total:

\$766,000

4 | OPINION OF PROBABLE COSTS

PROJECT COST EVALUATION

OPINION OF PROBABLE CONSTRUCTION COSTS FOR ARCHITECTURAL

Assumes 2024 Construction Start - Add 6% to Construction Costs for Each Year Thereafter for Inflation

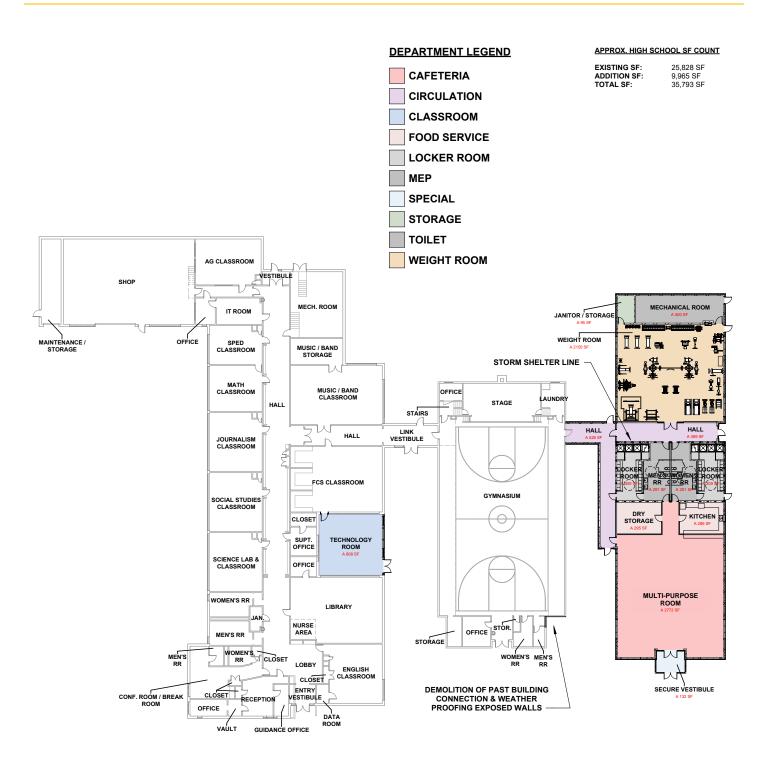
PAINT METAL WALL PANEL	\$65,000
REPLACE CARPET	\$91,104
REPLACE VINYL TILE	\$81,384
REPLACE LAY-IN CEILINGS	\$89,040
REPLACE ALL WINDOWS ON HIGH SCHOOL AND NORTH ELEMENTARY	\$265,285
REPLACE HIGH SCHOOL BOILER ROOM DOOR/FRAME/STEPS	\$10,000
REPLACE SELECT CASEWORK/COUNTERTOPS	\$55,000
REPLACE/FORTIFY DECKING AT STAGE MEZZANINE STORAGE AREAS	\$9,000
MISCELLANEOUS HANDRAILS REPLACE OR INSTALL	\$5,000
ASBESTOS ABATEMENT	\$40,000
CONCRETE REPAIR/REPLACEMENT	\$17,500
MISCELLANEOUS/SMALLER ITEMS	\$30,000
ROOF REPLACEMENT/REBUILD	TBD

TOTAL

NOTE: ALL PROJECTED COSTS REPRESENT 2024 CONSTRUCTION COSTS NOTE: DESIGN AND ENGINEERING COSTS ARE NOT INCLUDED

4 | OPINION OF PROBABLE COSTS

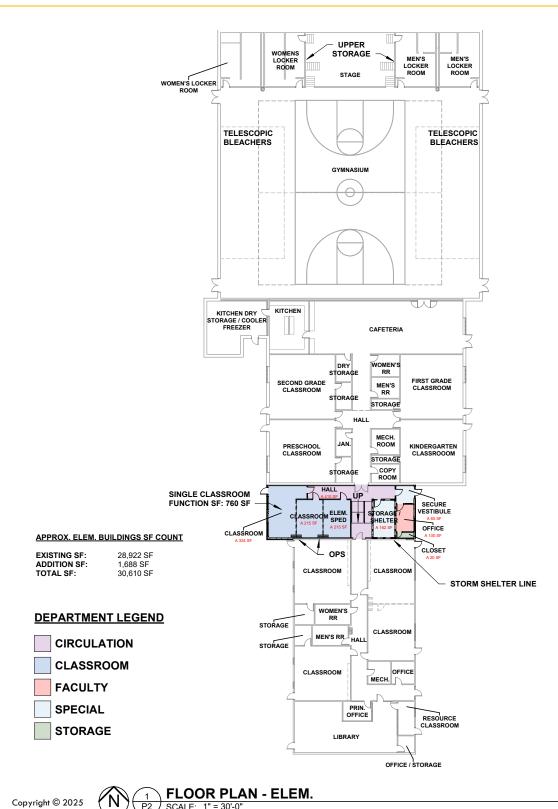
PROJECT COST EVALUATION


Assumes 2024 Construction Start - Add 6% to Construction Costs for Each Year Thereafter for Inflation

OPINION OF PROBABLE CONSTRUCTION COSTS FOR ARCHITECTURAL	\$758,313
OPINION OF PROBABLE CONSTRUCTION COSTS FOR MECHANICAL	\$2,201,000
OPINION OF PROBABLE CONSTRUCTION COSTS FOR ELECTRICAL	\$1,732,100

PROJECT TOTAL

\$4,691,413



WHEELER CENTRAL PUBLIC Project Number: 2516

SCHOOLS - OPTION A

www.WilkinsADP.com

P2 SCALE: 1" = 30'-0"

SCHEMATIC SITE PLAN SCALE: 1" = 100'-0"

Project Number: 2516

WHEELER CENTRAL PUBLIC **SCHOOLS - OPTION A**

